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Abstract Relationships of seabird distribution and abun­
dance to continental shelf fronts off the southeastern United 
States were studied during a 15-month period in 1983-1984. 
Surface thermal fronts occur in the middle shelf domain (20-40-
m depths) on the continental shelf of the South Atlantic Bight 
(Cape Hatteras, North Carolina, to Cape Canaveral, Florida). 
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402 1 C. Haney and P.A. McGillivary 

Midshelf fronts propagate south of Cape Hatteras following 
coolings events and persist from October through March. The 
monthly mean abundance of seabirds in the midshelf domain 
was correlated with the frequency of occurrence and extent of 
these fronts. Seabird abundance within the midshelf domain 
peaked during fall and winter when fronts were also most 
numerous and extensive (attaining 1,800-km lengths). Seabirds 
aggregate within 10 km of the front, with greatest densities 
(> 150/km2) on the shoreward side. Seabird guilds displayed 
different affinities for the fronts. Zooplanktivorous phalaropes 
(Phalaropus) had a clumped distribution, highly correlated 
with changes in water surface temperature at the front (r = 

.614, p < .01). Some peak aggregations of piscivorous birds, 
namely the northern gannet (Sula bassanus), were associated 
with fronts while other peaks occurred elsewhere. Scavenging 
species (Larus) were evenly distributed across the shelf and 
showed a weak negative relationship with the front (r = - .477, 
p < .10). Both nearshore and pelagic species forage at midshelf 
fronts. The elevated levels of biological activity and higher 
biomasses at fronts may allow seabirds to forage efficiently, 
resulting in these apparent shifts from typical habitats. 

KEY WORDS: fronts, seabirds, guilds, continental shelf, South 
Atlantic Bight, southeastern United States. 

Introduction 

Elevated levels of biological productivity have been frequently 
observed at oceanic fronts (Pingree et al., 1974; Fournier et al., 
1979; Iversen et al., 1979; Pingree, 1979; Floodgate et al., 1981; 
Parsons et al., 1981; Jacobsen et al., 1983). Higher biomasses 
associated with these fronts may be due to the accumulation of 
plankton arising from convergent circulation (Houghton and 
Marra, 1983) or to enhanced vertical mixing and upwelling of 
nutrients into the euphotic zone. Complementary nutrients sup­
plied by two adjacent water masses may also enhance productiv­
ity at fronts (Beardall et al., 1978). 

Fronts have been defined as zones of contact between water 
masses of different densities, between mixed and stratified wa-
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Midshelf Fronts and Seabirds 403 

ters, or between water masses having thermoclines at different 
depths (U da, 1959). Fronts may arise from several physical proc­
esses depending upon location. Inputs of freshwater (Bowman 
and Iversen, 1978), confluences (Pingree and Griffiths, 1978), and/ 
or tidal/surface shear (Simpson and Pingree, 1978) influence their 
formation. Fronts are found from shallow to deep water over the 
continental shelf (Bowman and Esaias, 1978; Allen et al., 1983), 
and in pelagic waters (Cromwell and Reid, 1956; Knauss, 1957; 
Voorhis, 1969; Colton et al., 1975). Nearshore and continental 
shelf break fronts have been described for the continental shelf 
off the southeastern United States (Allen et al., 1983). We report 
here for the first time the annual variation of midshelf fronts on 
the continental shelf within this region. 

Seabirds generally occupy tertiary positions in marine food 
webs, and it is reasonable to assume that they are affected by the 
biological interactions at fronts. Seabirds have been found to 
associate with fronts in boreal and temperate water masses 
(Ainley and Jacobs, 1981; Bourne, 1981; Schneider, 1982; Kinder 
et al., 1983). The interactions of seabirds with shallow sea fronts 
in a subtropical region are described here. Seabird-front associa­
tions were investigated by addressing four general questions: 

1. What are the temporal and spatial patterns of midshelf fronts 
in the South Atlantic Bight? 

2. Do seabirds show a spatial affinity for these fronts? 
3. Do seabirds respond to the seasonal changes in the number 

and size of these fronts? 
4. Do seabird species differ in their affinity for fronts? 

Materials and Methods 

For the period February 1983 to April 1984, midshelf fronts off 
the southeastern United States were analyzed using National 
Oceanic and Atmospheric Administration (NOAA) Gulf Stream 
System Flow Charts (N = 151) available three times a week. 
Surface thermal boundaries exceeding 0. 75°C/km are contoured 
on 30-min latitude/longitude blocks using satellite infrared reflec­
tance data. Using these charts we calculated the numbers and 
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404 1 C. Haney and P.A. McGillivary 

lengths of fronts each month. Length was measured directly from 
the charts with a planimeter. Because satellite detection of fronts 
depends on the number of cloud-free days, the number of charts 
per month supplying frontal data varied. To permit comparisons 
between months and seasons, we standardized both number and 
length of fronts by expressing them as a function of the number 
of satellite map days (SMD) from which data were obtained. 

Seabird surveys based on 15-min counting periods were made 
between 30° and 32° N latitude from February 1983 to April 1984 
(Table 1). Each count represented one horizontal transect con­
ducted while the vessel proceeded at 8-10 knots on a constant 
course and heading. Ship location and speed were recorded at 
the beginning and end of each transect. For cross-shelf sections, 
the transects were continuous and consecutive to enable close 
resolution of the dependence of seabird aggregations on physical 
oceanographic features. 

For density estimates, all birds were counted out to a distance 
of 300 m from the observer and within the 90° bow sector on the 
side of the ship with the best viewing conditions (e.g., less glare). 
The surface area censused was calculated by multiplying the 
length of the transect (in kilometers) by 0.3 km. Width of the 
transect was determined with a hand-held rangefinder 
(Heinemann, 1981). Birds not in the transect zone were counted 
but not included in density estimates. Ship-following seabirds 
were excluded from counts. Bias arising from multi-observer 
counting was minimized by a single person (Haney) recording 
more than 95% of the 438 transects. 

Depth measurements were made with a SIMRAD EL fa­
thometer set to 2-m sensitivity scale. Water surface temperatures 
were recorded to the nearest 0.2°C with a bucket thermometer or 
Wheatstone bridge thermistor towed continuously at a depth of 
0.5 m. Changes in water surface temperature were calculated 
using the formula J)..T = IT0 - T1J, where T0 = water surface 
temperature at the start of the transect and T1 = water surface 
temperature at the end of the transect. Cross-shelf changes in 
seabird density were then plotted against changes in water sur­
face temperature (J)..n for each transect. 

Differences in seasonal (quarterly) seabird density and in the 
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Midshelf Fronts and Seabirds 405 

Table 1 
Seabird Sampling Effort in the Midshelf Domain of the South Atlantic 

Bight During 1983 and 1984 

No. 
No. No. Census Cruise 

Cruises Transects Days km2 Vessels" Objectivesb 

February 4 56 7 79.14 A,B G,Z 
March 2 44 4 36.47 A,B G,Z 
April 2 25 9 21.35 B,C G,M,Z 
May 2 54 8 58.92 A,C,D G,M 
June l 21 5 25.98 B G 
July l 53 5 49.77 A M,Z 
August 2 44 7 40.49 A,B G,Z 
September 4 60 5 78.10 A,C M,Z 
October 2 33 13 74.86 A,C M,Z 
November 2 19 3 24.71 A z 
December 2 29 4 37.81 A,B G 

a A = 21-m RIV Blue.fin (Skidaway Institute of Oceanography); B = 23-m 
RIV Bulldog (University of Georgia); C = 41-m RIV Cape Hatteras (Duke 
Oceanographic Consortium); D = 48-m RIV Delaware II National Marine 
Fisheries Service (NOAA/NMFS). 

bG = groundfish survey, M = microbial research, Z = zooplankton re-
search. 

frequency and extent of fronts were assessed by one-way analy­
sis of variance (AN OVA) for samples of unequal sizes (Snedecor 
and Cochran, 1980). Relationships of seabird abundance (density) 
to changes in water surface temperature were measured with 
simple correlation (r). Correlation analyses were also used to 
compare monthly seabird densities to monthly frontal occur­
rence and extent. No transformations of data were applied for 
correlative tests. The nonparametric Mann-Whitney U test was 
used to test for significant differences between seabird density in 
nearfront (within 10 km) and remaining transects. Changes in 
habitat selection of Sula bassanus and Puf.finus lherminieri were 
analyzed with Student's t tests for samples with unequal vari­
ances. Statistical analyses were done with a StatPak II program 
on a Hewlett-Packard 9825A computer. Statistical significance 
was set at p < .05. Green's (1966) coefficient of dispersion was 

D
ow

nl
oa

de
d 

by
 [

69
.1

74
.5

8.
18

8]
 a

t 0
8:

22
 3

0 
O

ct
ob

er
 2

01
3 



406 J C. Haney and P.A. McGillivary 

used to measure the degree of cross-shelf spatial clumping in 
three seabird guilds. This coefficient is computed using the for­
mula [(s2/.X) - 1]/lx - 1, where s2, x, and Ix are, respectively, 
the sample variance, mean, and total sample number. 

Results 

Physical Dynamics of Midshelf Fronts 

Midshelf fronts exhibited variation ranging over daily to monthly 
to interannual time scales. The seasonal (quarterly) variation in 
the number and length of midshelf fronts during the 1983-1984 
study period is shown in Table 2. Statistically significant sea­
sonal variations in front frequency (one-way ANOVA, F = 
10.514, p < .001) and front length (one-way ANOVA, F = 4.984, 
p < .05) were detected. Figure 1 illustrates the progression and 
persistence of fronts at roughly 2-week intervals throughout the 
fall, winter, and spring when cloud conditions permitted their 
observation. Seasonal frontogenesis typically begins south of 
Cape Hatteras off the Carolinas during September and October. 
Midshelf fronts attain their greatest spatial extent (in excess of 
1,800-km lengths) during late fall and midwinter (November­
February). Regionwide frontolysis occurs in spring (March­
May) as frontal frequency and spatial extent decrease. 

In late winter midshelf fronts become more convoluted and 
move across the shelf over weekly time spans (Figure 2). Both the 
midshelf and Gulf Stream western boundary front exhibit similar 
configurations during such periods. 

The within-season persistence of fronts (measured by the per­
centage of SMDs with midshelf fronts) varied interannually, al­
though not in the two February-April time periods in which 
seabird counts were conducted (39% in 1983 vs. 38% in 1984). 
During the fall frontogenesis period (October-December), how­
ever, fronts occurred in 51% of the SMDs in 1983 compared to 
35% in 1984. 

Shipboard measurements during cross-shelf sections (Figure 
3) indicate that midshelf fronts are regions of strong horizontal 
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Midshelf Fronts and Seabirds 407 

Table 2 
Seasonal Differences in the Number and Length (km) of 

Midshelf Fronts in the South Atlantic Bight 

No. Fronts/SMD Front Length/SMD 

i Range i Range 

Dec-Feb. 0.49 0.33-0.57 487 383-552 
Mar.-May 0.27 0.08-0.38 152 61-190 
June-Aug. 0.03 0.00-0.08 8 0-25 
Sept.-Nov. 0.70 0.42-0.84 423 123-635 

surface temperature gradients (Figure 4). On 1 February 1984 the 
surface temperature increased from 9.0° to 14.0°C over 20 km 
(1.0°C/5 km). Nearshore and outer shelf waters were charac­
terized by much lower gradients of 0.1-0.2°C/5 km. On 21 No­
vember 1983, the surface temperature gradients at the front were 
1.1°C/5 km compared to o.2°C/5 km in nearshore and outer shelf 
waters. 

Seabird Distribution and Midshelf Fronts 

Seabirds were found to aggregate at the midshelf front on both 
the 21 November and 1 February cross-shelf sections (Figure 4). 
One of two peaks in bird density on 21 November and two of 
three peaks on 1 February corresponded to locations with strong 
surface water temperature gradients (thermal fronts). Significant 
correlations between seabird density and changes in water sur­
face temperature were obtained on the entire 1 February cross­
shelf section (r = .582, p < .01, df = 19), but not on the entire 21 
November section (r = .185, p < .50, df = 19). When inshore 
transects (0-20-m depth) were excluded from correlation analy­
sis, significant correlations were obtained for both sections (r = 
.753, p < .001, df = 16 for 21 November; r = .577, p < .05, df = 

11for1 February). Inshore density peaks on 21 November (Tran­
sects 1-5; left side of Figure 4) were a result of seabirds, mostly 
scavenging Larus, associated with fishing vessels. The peak in 
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28 Octobel' 1983 
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FIGURE 1. Seasonal persistence of midshelf fronts (dashed lines). Fronts are 
shown relative to the shelf and western Gulf Stream front (solid line). 
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32° 

31° 

81° 80° 79° 

32° 

31° 

81° goo 79° 

FIGURE 3. Cruise track of cross-shelf section in the southern South Atlantic 
Bight on (top) 21November1983 and (bottom) l February 1984. The location of 
the mid shelf front (dashed line) and western Gulf Stream front (solid line) are 
derived from satellite data. 
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412 1 C. Haney and P. A. McGillivary 

Distance {km) 
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FIGURE 4. (top) Density of all seabirds during the 108-km cross-shelf section 
on 21 November 1983. The satellite-derived location of the midshelf front is 
shown at Transect 15. Transect numbers correspond to those in the top part of 
Figure 3. (bottom) Density of all seabirds during the 90-km cross-shelf section 
on I February 1984. The satellite-derived location of the mid shelf front is shown 
at Transects 13 and 19. Transect numbers correspond to those in the bottom 
part of Figure 3. 
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Midshelf Fronts and Seabirds 413 

inshore density on 1 February (Transect 5; right side of Figure 4) 
represented a single flock of Sula bassanus feeding on shoaling 
bait fish. 

Aggregations of seabirds on 1 February were found mainly on 
the shoreward side of the front (right side of Figure 4). A peak of 
160 birds/km2 occurred at Transect 11. To compare the density of 
seabirds in frontal and nonfrontal regions we used the non­
parametric Mann-Whitney U test, which allows comparisons of 
medians from two small-sample populations. We compared den­
sities in transects within 10 km shoreward of the front to the 
remaining midshelf transects. Average density of seabirds in 
these nearfront transects was significantly higher (52 vs. 7: p < 
.005, N = 6, 15, z = 3.04) than in other transects. 

Seabirds associate with fronts in alongshore (length) as well as 
cross-shelf (width) dimensions. The two peaks in density at 
Transects 13 and 19 (right side of Figure 4) on 1 February oc­
curred at the same front. Satellite data revealed, however, that 
this front was convoluted, turning to the northeast before again 
turning back to the southwest (bottom part of Figure 3), and 
aggregations of seabirds were found at both frontal crossings. 

Seabird species that typically occur in nearshore and more pe­
lagic habitats forage in the midshelf domain during periods of 
frontal activity. We compared differences in habitat selection of 
two species when midshelf fronts were frequent (October­
February) and when they were infrequent (March-September). 
Depth at the location where individuals were observed was con­
venient for characterizing the cross-shelf habitat preferences of 
Puffinus lherminieri and Sula bassanus (Table 3). Other species 
either occurred during restricted time frames or in insufficient 
numbers for statistical treatment. Puffinus lherminieri is charac­
teristic of tropical pelagic waters off the southeastern United 
States, that is, the Gulf Stream and outer shelf (Clapp et al., 1982; 
Haney, unpublished data). When fronts were present in the mid­
shelf domain, this species was found much further inshore in 
shallower water (Table 3). Sula bassanus exhibited an opposite 
but equally significant shift. This species is found principally in 
nearshore waters (Clapp et al., 1982; Lee and Haney, 1984) but 
occurred further offshore in the midshelf domain when fronts 
were present (Table 3; Figure 5). 
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414 1 C. Haney and P.A. McGillivary 

Table 3 
Cross-Shelf Distribution (measured as a function of mean depth, x, in 

meters) of Two Seabird Species in Response to Frontal Occurrence 

Frontal Occurrence 

Frequent Infrequent 

x 
Puffinus lherminieri 41 
Sula bassanus 22 

10 
I 

C\I 125 i e 120 .IC 
~ 30 
CD 25 
g. 20 ... 
~ 15 
Ill 10 if 5 

C\I e 25 
20 .IC 

' 15 Ill ... 
CD 10 c: 

5 c: 
Ill 

0 (!) 

C\I 10 e 
~ 
Ill 

:::::: 
~ 

5 

(!) 
3 

SD N x SD N p df 

20 
I 

5 

6 120 207 171 215 10.57 <.001 333 
4 532 11 3 162 32.87 <.001 692 

Distance (km) 

30 40 50 60 70 80 90 
I I I I I I I 

il 
Zooplanktlvores 

Piscivores : 
I 
I 
I 
I 
I 

i 
I 
I 
I 
I 
I 

Scavengers! 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

7 9 11 13 15 17 19 21 
Transect Numbers 

FIGURE 5. Variation in dispersion of three seabird guilds around a midshelf 
front located at Transects 13 and 19 on I February 1984. Cross-shelf temperature 
gradients are identical with those on the right side of Figure 4. 

Seasonal Seabird Abundance and Fronts 

Seabird abundance in the midshelf domain varied markedly be­
tween seasons and months. One-way ANOVA revealed only 
weak (F = 2.311, p < .15) variation in quarterly seabird abun-

D
ow

nl
oa

de
d 

by
 [

69
.1

74
.5

8.
18

8]
 a

t 0
8:

22
 3

0 
O

ct
ob

er
 2

01
3 



Midshelf Fronts and Seabirds 415 

dance, due primarily to a proportionately higher contribution of 
the within-season component of variance. Numbers of seabird 
species and individuals in the midshelf domain were higher in 
winter and fall (Table 4) when fronts were also most frequent and 
extensive (see Table 2). Mean seabird density in spring and 
summer was less than one bird/km2 , an order of magnitude lower 
than fall and winter values. 

Monthly variation in seabird abundance and front frequency 
and extent are shown in Figure 6. To test linear relationships of 
seabird abundance with front frequency and extent, we used 
simple correlation (r). Results of these tests indicated that 
monthly seabird density in the midshelf domain was significantly 
correlated with monthly front length (r = .611, p < .05, df = 9). 
Monthly seabird density and monthly front frequency were not 
significantly correlated at the 5% level (r = .523, p < .10, df = 9). 
The probability was almost significant and the small sample size 
reduces the power of this test, thereby increasing the risk of Type 
II error (erroneous acceptance of the null hypothesis). 

If monthly seabird abundance varied similarly in adjacent 
portions of the shelf not influenced by the fronts, spurious cor­
relations might be indicated. Seasonal changes in midshelf sea­
bird abundance could, for example, be due to some extrinsic 
factor alone (e.g., a regionwide influx of seabirds from annual 
migration), independent of local conditions. To check for this 
type of error, monthly seabird abundance data from the outer 
shelf (40--200-m depths) were examined. Monthly seabird densi­
ties in this region of the shelf ranged from 1.32 to 4.81 birds/km2. 

Compared to this outer shelf domain, significantly higher varia­
tion (one-tailed test, F = 20.647, p < .005) occurred in the 
midshelf region where fronts exhibited seasonality. 

Seabird Guild Affinities for Fronts 

Seabird species feed on a variety of marine organisms and may 
be functionally grouped into guilds based on their major prey. We 
classified species recorded on the 1 February cross-shelf section 
into three guilds based on previous reviews (Ashmole, 1971; 
Ainley, 1977; Clapp et al., 1982). The species composition, den­
sity, and percent occurrence of a zooplanktivorous, piscivorous, 
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FIGURE 6. Relationship of monthly mean midshelf seabird density to monthly 
number and length of midshelf fronts per satellite map day (SMD) in the South 
Atlantic Bight. 

and scavenging guild are summarized in Table 5. The three guilds 
showed varying degrees of cross-shelf clumping and affinity for 
the midshelf front (see Figure 5). 

We measured the degree of clumping (or dispersion) with the 
coefficient developed by Green (1966), the only index of disper­
sion not dependent on sample mean, sample size, and total 
sample numbers (Elliott, 1977). Values for this index range from 0 
for random dispersion to 1 for maximum contagion or clumping. 
Values obtained for the scavenging guild (0.043), piscivorous 
guild (0.202), and zooplanktivorous guild (0.246) indicated dif­
ferential cross-shelf dispersion for these groups. 
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Midshelf Fronts and Seabirds 419 

When we regressed densities of the three guilds to cross-shelf 
changes in water surface temperature (.1.n, only zooplanktivores 
were significantly correlated (r = .614, p < .005, df = 19). 
Piscivores (r = .187, p < .50, df = 19) and scavengers (r = 

- .268, p < .50, df = 19) were not correlated with cross-shelf 
.1.Ts. When only midshelf transects were analyzed, however, the 
probability of Type I error decreased for correlations of both 
piscivores (r = .422, p < .20, df = 11) and scavengers (r = 

-.477, p < .10, df = 11). 

Discussion 

Seabird Attraction to Midshelf Fronts 

Although seabird-front associations have been demonstrated re­
peatedly (Ainley and Jacobs, 1981; Schneider, 1982; Kinder et al., 
1983; Haney and McGillivary, 1985), the mechanisms responsible 

Table 5 
Species Composition, Density (km - 2), and Percent Occurrence of 
Three Seabird Guilds in Nearfront (<10 km) and Other Transects 

During the February 1984 Cross-Shelf Section 

Nearfront Transects Other Transects 

N Density %* N Density %* 

Zooplanktivores 
Phalaropus lobatus 240 16 60 0 0 0 
P. fulicaria 278 19 50 0 0 0 
Phalaropus sp. 162 11 60 40 3 9 
Total 680 46 70 40 3 9 

Piscivores 
Sula bassanus 57 4 70 57 4 72 

Scavengers 
Larus atricilla 0 0 0 1 0.1 9 
L. philadelphia 39 3 70 38 2 54 
L. argentatus 7 0.5 50 21 1 82 
Rissa tridactyla 4 0.3 30 0 0 0 
Total 50 4 90 60 3 91 

*Percent of transects in which the taxon was observed. 
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420 J C. Haney and P.A. McGillivary 

for these associations are imperfectly known. We postulate that 
seabird prey items at midshelf fronts originate from environmen­
tal conditions caused by subsurface Gulf Stream intrusions and 
are subsequently made available to surface-foraging seabirds 
owing to secondary physical processes involving vertical trans­
port. 

Phytoplankton standing crops within the midshelf zone result 
from subsurface or bottom intrusions of cooler, deep nutrient­
rich Gulf Stream waters (Blanton et al., 1981; Yoder et al., 1981; 
Yoder et al., 1983), and high zooplankton stocks occur in re­
sponse to this phytoplankton growth (Paffenhofer, 1980; 
Paffenhofer et al., 1984 ). Unlike the continental shelf north of 
Cape Hatteras where phytoplankton blooms are seasonal 
(Sverdrup, 1953; Ryther and Yentsch, 1958; Riley, 1959; Smayda, 
1973), plankton-rich intrusions occur episodically in the South 
Atlantic Bight throughout the period May through October 
(Paffenhofer et al., 1984; Yoder, 1985). 

Zooplankton, such as Temora spp., Eucalanus pileatus, Cen­
tropages furcatus, Candacia armata, Conchoecia, and Sagitta 
enfiata (Bowman, 1971), are primarily restricted to bottom waters 
at or below the thermocline because of seasonal stratification 
(Bumpus, 1955; Blanton, 1971; Stefansson et al., 1971; Atkinson 
et al., 1980). Well-mixed nearshore waters on the shoreward side 
of the midshelf front would result in circulation patterns condu­
cive to vertical transport of zooplankton from the thermocline to 
or near the surface (Bowman, 1978; Garvine, 1980), particularly 
during periods of northerly alongshore winds (Figure 7). Doming 
isotherms on the shoreward side of a typical midshelf front 
(Figure 8) demonstrate that divergence may occur. 

Higher biomasses of some zooplankton, especially larval 
Clupeiiform fish (J. A. Yoder, unpublished data) and the copepod 
Eucalanus pileatus (G.-A. Paffenhofer, unpublished data), occur 
on the shoreward side of the front. Seabird species with the 
highest affinity for the front were zooplanktivorous phalaropes 
(Dodson and Egger, 1980) that are restricted to the ocean surface 
during feeding (Ainley and Sanger, 1979; Ridley, 1980). Pha­
laropes have been previously related to oceanic fronts or similar 
regions of divergence (Brown, 1977, 1980a; Briggs et al., 1984). 
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Midshelf Fronts and Seabirds 421 

Seabird species feeding on fish displayed less affinity for the 
fronts because their prey are more mobile. The peak aggregation 
of piscivorous birds at the front (see Figure 5) may have been due 
to fish that were aggregated at the front for either zooplankton 
feeding or behavioral thermoregulation (Brandt and Wadley, 
1981; Magnuson et al., 1981). Large schools of shoaling baitfish 
were observed at the front on 1 February 1984. 

Influences of Front Heterogeneity 

Midshelf fronts are seasonally dynamic physical features. The 
formation of midshelf fronts typically begins in the northern 
South Atlantic Bight during fall as a result of atmospheric inter­
actions with surface waters. Physical parameters of continental 
shelf waters off the Carolina coasts have been described by 
several authors (Bumpus, 1955; Bumpus, 1973; Stefansson et al., 
1971). A marked wind shift from the southeast to the northwest 
occurs during fall in this region (Saunders, 1977; Weber and 
Blanton, 1980). Ekman forcing by northwest winds results in the 
retention of low-salinity, cooler-surface waters nearshore. Wind 

'E 
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c. 60 
<ll 
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20 40 60 80 100 120 140 
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IZZZl Stratified Outershelf water 
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- Deep, cold Gulf Stream water 

FIGURE 7. Schematic cross-section relating a midshelf front to water masses 
and circulation on the southeastern United States continental shelf. 
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422 J C. Haney and P.A. McGillivary 
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FIGURE 8. Cross-shelf section of a February 1982 midshelf front showing 
subsurface thermal structure (A) and concentrations of chlorophyll a (B) and 
nitrate (C). 

events, namely the passage of cold fronts, concurrently cause 
intensified nearshore mixing and cooling (Brooks, 1978; Klinck 
et al., 1981), potentially abetted by intrusions of colder Virginia 
coastal waters (Bumpus and Pierce, 1955). As this nearshore zone 
of colder water forms, cross-shelf water surface temperature 
gradients are great enough to generate a second, midshelf zone 
between this water mass and the warmer outer shelf waters 
influenced by the Gulf Stream (Atkinson et al., 1983). Fron-
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Midshelf Fronts and Seabirds 423 

togenesis occurs as shelf waters form separate thermal zones (see 
Figure 7). As spring warming takes place, shelf waters become 
increasingly stratified as northerly wind events gradually de­
crease in duration and intensity. Fronts then break down (fron­
tolysis) and decrease in spatial extent. 

Seabird and front seasonality may be related because fronts 
are the principal mechanism enhancing foraging opportunities 
for this taxon within the midshelf domain. The secondary pro­
ductivity associated with bottom intrusions is largely inaccessi­
ble to seabirds, except at fronts, since dominant species in this 
region are exclusively surface foragers (Haney, unpublished 
data). 

Midshelf fronts are also subject to cross-shelf movements (see 
Figure 2). In late winter and spring, freshwater inputs to near­
shore waters in the central portion of the South Atlantic Bight 
peak and allow a flux of low- salinity water offshore (Atkinson et 
al., 1978; Blanton and Atkinson, 1983). Generally, low-salinity 
water is removed by longshore currents adjacent to the coast. 
However, the increasing intermittency of strong, northerly wind 
events aided by low or southerly winds may advect lenses of low­
salinity water offshore in plumes. When cross-shelf movement of 
water masses results from these events, the midshelf front be­
comes subject to Gulf Stream western boundary frontal dynam­
ics, with both front types attaining nearly identical configura­
tions (see Figures 1 and 3, bottom). 

Cross-shelf movements of fronts may affect seabird distribu­
tion by shifting favorable foraging areas over a period of days. 
Seabird aggregations persist at fronts; large numbers of pha­
laropes were observed at the midshelf front on both 1 February 
and 8 February 1984, a period in which the front shifted 25 km 
seaward. 

Seabirds may be affected by additional temporal and spatial 
heterogeneity exhibited by midshelf fronts. Alongshore seabird 
distribution within the midshelf domain may be influenced by the 
seasonal variation in the latitudinal occurrence of the fronts (see 
Figure 1). Significance of midshelf fronts to seabirds may depend 
not only on front number, length, and movement throughout the 
season of their occurrence, but also on variability over even 
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424 J C. Haney and P.A. McGillivary 

smaller spatial and shorter temporal scales. The intensity and 
duration of wind events, Gulf Stream frontal events, periodic 
tidal events, diurnal atmospheric change, and inherent frontal 
instability impart additional sources of variation to frontal dy­
namics (Garvine, 1974; Feamhead, 1975; Bowman and Esaias, 
1978; Brooks, 1978; Lee and Brooks, 1979; Allen et al., 1980; 
Brooks and Bane, 1981; Klinck et al., 1981). These effects may 
significantly influence conditions determining optimal seabird 
foraging at fronts (Briggs et al., 1984). Seabirds may forage effi­
ciently at a given front at several different time intervals. The 
mobility of seabirds may allow them to make use of changes in 
favorable feeding opportunities when and wherever they occur. 

Scale-Dependent Heterogeneity in Frontal Analyses 

The data presented here indicate that measurements of the tem­
poral and spatial heterogeneity of fronts are important 
considerations when attempting to understand the coupling of 
physical and biological systems at these features, from both a 
biological and a sampling perspective (cf Stommel, 1963; Kelley, 
1976; Haury et al., 1978; Steele, 1978; Dayton and Tegner, 1984). 
Although fronts have been termed stable, predictable features 
with respect to seabird concentrations (Brown, 1980b ), they may 
be highly variable oceanographic phenomena (Lee and Atkin­
son, 1983), and exert at least some corresponding variability on 
seabird distribution (Haney and McGillivary, 1985). 

Scale of data analysis may affect conclusions regarding the 
associations between seabirds (or other marine organisms) and 
specific oceanographic features like fronts. Results from several 
tests presented here showed that reducing sample size and drop­
ping degrees of freedom in the analyses altered the statistical 
results. In some cases this gave significant correlations when 
previous correlations were not significant. In other cases the 
probability of Type I error decreased, although not to the point of 
significance at the 5% level. Relating total seabird densities, and 
densities of particular species, to indices of midshelf fronts was 
thus meaningful only when information on frontal temporal and 
spatial boundaries was available beforehand and used to adjust 
the scale of analysis. These data were obtained by consulting 
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Midshelf Fronts and Seabirds 425 

long series of satellite-derived charts gathered over several 
months. 

The logistical problems involved in measuring the dynamic 
attributes of fronts are considerable (Bowman, 1978). One of the 
advantages of using remote sensing data for integrative work on 
marine ecosystems is that it allows real-time documentation of 
temporal and spatial patterns of physical oceanographic events 
at scales not normally possible with shipboard data collection. 
Examination of these trends may generate additional hypotheses 
relevant to biological systems. Ultimately, the testing of these 
hypotheses will allow a broader understanding of the ways m 
which marine organisms interact with their environment. 
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